Call Boomerang Books 1300 36 33 32

sign up for Boomerang Books BulletinGet Latest Book News + FREE Shipping. Subscribe to the Boomerang Books Bulletin eNewsletter right now!

Description - Hidden Markov Models and Dynamical Systems by Andrew M. Fraser

This text provides an introduction to hidden Markov models (HMMs) for the dynamical systems community. It is a valuable text for third or fourth year undergraduates studying engineering, mathematics, or science that includes work in probability, linear algebra and differential equations. The book presents algorithms for using HMMs, and it explains the derivation of those algorithms. It presents Kalman filtering as the extension to a continuous state space of a basic HMM algorithm. The book concludes with an application to biomedical signals. This text is distinctive for providing essential introductory material as well as presenting enough of the theory behind the basic algorithms so that the reader can use it as a guide to developing their own variants.

Buy Hidden Markov Models and Dynamical Systems by Andrew M. Fraser from Australia's Online Independent Bookstore, Boomerang Books.

Book Details

ISBN: 9780898716658
ISBN-10: 0898716659
Format: Paperback
(247mm x 174mm x 7mm)
Pages: 143
Imprint: Society for Industrial & Applied Mathematics,U.S.
Publisher: Society for Industrial & Applied Mathematics,U.S.
Publish Date: 30-Mar-2008
Country of Publication: United States

Book Reviews - Hidden Markov Models and Dynamical Systems by Andrew M. Fraser

» Have you read this book? We'd like to know what you think about it - write a review about Hidden Markov Models and Dynamical Systems book by Andrew M. Fraser and you'll earn 50c in Boomerang Bucks loyalty dollars (you must be a Boomerang Books Account Holder - it's free to sign up and there are great benefits!)

Write Review

Author Biography - Andrew M. Fraser

Andrew M. Fraser is a Technical Staff Member in the ISR division of the Los Alamos National Laboratory where he uses stochastic models in his work on signal analysis. He spent 15 years at Portland State University in Oregon serving on the faculties of both the Systems Science PhD Program and the Electrical and Computer Engineering Department before joining LANL in 2005. He earned a PhD in Physics from UT-Austin with a dissertation on the use of mutual information estimates in the analysis of chaotic time series. Before graduate school, he designed bipolar memory technology and products at Fairchild semiconductor. He is a member of SIAM and a Senior Member of the IEEE.