0

Call Boomerang Books 1300 36 33 32

Description - Statistical Learning for Big Dependent Data by Daniel Pena

Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource
Statistical Learning with Big Dependent Data delivers a comprehensive presentation of the statistical and machine learning methods useful for analyzing and forecasting large and dynamically dependent data sets. The book presents automatic procedures for modelling and forecasting large sets of time series data. Beginning with some visualization tools, the book discusses procedures and methods for finding outliers, clusters, and other types of heterogeneity in big dependent data. It then introduces various dimension reduction methods, including regularization and factor models such as regularized Lasso in the presence of dynamical dependence and dynamic factor models. The book also covers other forecasting procedures, including index models, partial least squares, boosting, and now-casting. It further presents machine-learning methods, including neural network, deep learning, classification and regression trees and random forests. Finally, procedures for modelling and forecasting spatio-temporal dependent data are also presented.
Throughout the book, the advantages and disadvantages of the methods discussed are given. The book uses real-world examples to demonstrate applications, including use of many R packages. Finally, an R package associated with the book is available to assist readers in reproducing the analyses of examples and to facilitate real applications.
Analysis of Big Dependent Data includes a wide variety of topics for modeling and understanding big dependent data, like:

New ways to plot large sets of time series

An automatic procedure to build univariate ARMA models for individual components of a large data set

Powerful outlier detection procedures for large sets of related time series

New methods for finding the number of clusters of time series and discrimination methods , including vector support machines, for time series

Broad coverage of dynamic factor models including new representations and estimation methods for generalized dynamic factor models

Discussion on the usefulness of lasso with time series and an evaluation of several machine learning procedure for forecasting large sets of time series

Forecasting large sets of time series with exogenous variables, including discussions of index models, partial least squares, and boosting.

Introduction of modern procedures for modeling and forecasting spatio-temporal data

Perfect for PhD students and researchers in business, economics, engineering, and science: Statistical Learning with Big Dependent Data also belongs to the bookshelves of practitioners in these fields who hope to improve their understanding of statistical and machine learning methods for analyzing and forecasting big dependent data.

Buy Statistical Learning for Big Dependent Data by Daniel Pena from Australia's Online Independent Bookstore, Boomerang Books.

Book Details

ISBN: 9781119417385
Format: Hardback
(259mm x 185mm x 31mm)
Pages: 560
Imprint: Wiley-Blackwell
Publisher: John Wiley and Sons Ltd
Publish Date: 29-Jun-2021
Country of Publication: United States

Book Reviews - Statistical Learning for Big Dependent Data by Daniel Pena

» Have you read this book? We'd like to know what you think about it - write a review about Statistical Learning for Big Dependent Data book by Daniel Pena and you'll earn 50c in Boomerang Bucks loyalty dollars (you must be a Boomerang Books Account Holder - it's free to sign up and there are great benefits!)


A Preview for this title is currently not available.